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Gordon B. Mills§Y], and Han Liangt§||

Reverse-phase protein arrays represent a powerful func-
tional proteomics approach to characterizing cell signal-
ing pathways and understanding their effects on cancer
development. Using this platform, we have characterized
~8,000 patient samples of 32 cancer types through The
Cancer Genome Atlas and built a widely used, open-ac-
cess bioinformatic resource, The Cancer Proteome Atlas
(TCPA). To maximize the utility of TCPA, we have devel-
oped a new module called “TCGA Pan-Cancer Analysis,”
which provides comprehensive protein-centric analyses
that integrate protein expression data and other TCGA
data across cancer types. We further demonstrate the
value of this module by examining the correlations of
RPPA proteins with significantly mutated genes, assess-
ing the predictive power of somatic copy-number altera-
tions, DNA methylation, and mRNA on protein expression,
inferring the regulatory effects of miRNAs on protein ex-
pression, constructing a co-expression network of pro-
teins and pathways, and identifying clinically relevant pro-
tein markers. This upgraded TCPA (v3.0) will provide the
cancer research community with a more powerful tool for
studying functional proteomics and making translational
impacts. Molecular & Cellular Proteomics 18: S15-S25,
2019. DOI: 10.1074/mcp.RA118.001260.

Functional proteomics is a powerful approach to character-
izing cell signaling pathways and understanding their pheno-
typic effects on cancer development. Reverse-phase protein
arrays (RPPAs)' represent a cutting-edge proteomics tech-
nology that can quantitatively assess a large number of pro-
tein markers in thousands of samples in a cost-effective,
sensitive, and high-throughput manner (1-3). Using the RPPA
platform, we have characterized ~8,000 patient samples
across 32 cancer types through The Cancer Genome Atlas
(TCGA) project and >650 independent cancer cell lines of 19
cell lineages (4-6). To better utilize the RPPA data and serve
a broad biomedical research community, we developed an
open-access bioinformatics resource, The Cancer Proteome

Atlas (TCPA). This web-based platform not only releases the
most updated data that are generated by our RPPA platform
but also provides a user-friendly interface allowing users to
analyze and visualize RPPA data in a rich context (7), which
has substantially reduced the computational barriers to ana-
lyzing complex RPPA data in large-scale sample sets.

However, analytic modules in the previous TCPA versions
have focused on the protein-based analyses in individual
cancer types only and do not provide integrative analyses of
RPPA data with other types of molecular data. Using those
modules, it is difficult to explore the similarities and differ-
ences among cancer types, which limits the full potential of
TCPA. To maximize its utility, we have updated TCPA by
adding a newly developed module called “TCGA Pan-Can-
cer Analysis.” This module provides comprehensive protein-
centric analyses that integrate association studies between
protein data and other types of molecular and clinical data
from TCGA. These data include somatic mutations, somatic
copy-number alterations (SCNAs), DNA methylation, mRNA
expression and miRNA expression, as well as patient sur-
vival, tumor subtype, and disease stage. With the new mod-
ule, users can easily identify protein markers that show
interesting patterns across cancer types. Overall, the cur-
rent TCPA (v3.0) represents a comprehensive, cutting-edge,
protein-centric pan-cancer analytic platform that is freely
available at http://tcpaportal.org.

MATERIALS AND METHODS

RPPA Data—The RPPA data were first quantified in the samples
collected from TCGA project, which included 7,694 patient samples
across 32 cancer types (6, 8-10). In total, 258 protein markers (in-
cluding total and phosphorylated proteins) were assayed. The raw
RPPA data were further standardized and normalized by SuperCurve,
median polish, and replicate-based normalization (10, 11) for down-
stream analyses.

TCGA Pan-Cancer Atlas Data—All the clinical and molecular data
were obtained from the TCGA Pan-Cancer Atlas project consisting of
() DNA data: somatic mutations, DNA methylation, and SCNAs; (ii)
RNA data: RNA-seq and miRNA-seg-based gene expression data;
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and (jii) clinical data: stage, tumor grade, overall survival, and pro-
gression-free survival data. Specifically, SCNA data were down-
loaded from Synapse (https://www.synapse.org/) with accession
number syn5049520.1. All the other data were retrieved from the
TCGA Pan-Cancer Atlas website (https://gdc.cancer.gov/about-data/
publications/pancanatlas). In addition, all the tumor subtype informa-
tion were collected from the TCGA marker publications (12).

Statistical Analysis—Multiple statistical methods were used to ex-
amine pan-cancer associations between RPPA data and other types
of molecular and clinical data: (i) for continuous data (including DNA
methylation, SCNA, mRNA expression, miRNA expression, RPPA,
and pathway scores), Spearman’s rank correlation analyses were
performed; (i) for dichotomous variables (e.g. wild type versus mu-
tated), t-tests were performed; and (iiij) ANOVA tests were applied to
those with more than two levels (e.g. tumor subtype, stage, and
grade). For survival analysis, both Cox proportional-hazards model
and log-rank test were used to calculate the correlations between the
levels of protein markers and patient survival times. All the p values
derived from multiple comparisons were adjusted by false discovery
rate (FDR). We reported significant results at FDR < 0.1.

Pathway Score Calculation—Eleven core cancer pathway scores
were calculated based on (signed) average of the RPPA levels for
each cancer type before being applied in the network analysis (13).
The protein members and their functional directions (i.e. up- or down-
regulation) within each pathway were defined in Akbani et al. (10). The
11 pathways included were apoptosis, core reactive, cell cycle, DNA
damage response, epithelial-mesenchymal transition, hormone a,
hormone b, PI3K/Akt, Ras/MAPK, RTK, and TSC/mTOR.

Bipartite Network Analysis—To show the correlations between pro-
tein levels and mutated genes, a bipartite network was generated
based on the mutational status of significantly mutated genes (SMGs)
and the 11 pathway scores. In total, 299 SMGs were obtained from
Bailey et al. (14), which were used to define the mutated and wild-type
sample groups in each cancer type. The correlations between path-
ways and SMGs were assessed by t-tests with FDR < 0.1. In the
bipartite network, the thickness of each edge represents the number
of cancer types with a significant correlation (FDR < 0.1), and the
color of each edge represents the direction of correlations.

Analysis of Protein Expression with SCNA, DNA Methylation, and
mRNA Expression—The total proteins were first extracted from the
RPPA data for the correlation analysis. Among 191 total proteins, 187
had matched genes in SCNA, DNA methylation, and mRNA data.
When multiple methylation probes were mapped to the same gene,
the one showing the most negative correlation with the mRNA ex-
pression was selected. The matched protein-gene pairs were named
“cis-pairs” and others were “trans-pairs.” For each cancer type,
Spearman’s rank correlation analysis was performed to assess both
the cis- and trans-pairs. All the p values were then adjusted by FDR.
The correlation coefficients of cis- and trans-pairs were plotted in
histograms with corresponding density curves. The difference be-
tween cis- and trans- distributions were tested by Student’s t test.

Identification of Common miRNA Regulators Across Cancer
Types—We first obtained predicted miRNA targets from TargetScan-
Human 7.2 (http://www.targetscan.org/vert_72/) (15). Only 191 total
proteins were used in this analysis. Next, the RPPA-associated genes
were matched to the miRNA-target list, which generated 1,345
miRNA-gene pairs including 223 mature miRNAs and 179 coding
genes. The miRNAs with at least five target genes were included in
the further analysis (119 miRNAs retained). For each miRNA-gene

" The abbreviations used are: RPPA, reverse-phase protein arrays;
TCGA, The Cancer Genome Atlas; TCPA, The Cancer Proteome
Atlas; FDR, false discovery rate; SCNAs, somatic copy-number alter-
ations; SMGs, significantly mutated genes.

pair, Spearman’s rank correlations were calculated. To evaluate the
miRNA effects in different cancer types, the difference between the
distributions of miRNA—target-protein and miRNA—nontarget-pro-
tein correlations were examined by the Kolmogorov-Smirnov test.
The difference of the means was calculated to determine the regula-
tion direction (repression or activation) in a cancer type. The miRNAs
were then ranked by the number of cancer types showing negative
direction, and only those with negative directions in at least two
cancer types were displayed in the heatmap.

Network Analysis of RPPA Pathways— A nested network visualiza-
tion was generated to show the co-expression relationships among
protein markers and RPPA pathways. In the networks, each node
represents a pathway/protein, and each edge represents the number
of cancer types in which the Spearman’s rank correlations between
two nodes were significant (FDR < 0.1). For simplicity, the edges with
significance in <10 cancer types were filtered out in the network. The
complete graphs were further identified by the “igraph” package in R.

Implementation of the TCGA Pan-cancer Analytic Module—All the
analytic results were first precomputed by univariate statistical anal-
yses. The result data, along with both molecular and clinical data,
were further converted to JSON format and curated into CouchDB.
The pan-cancer analyses were conducted in R. The web interface of
the pan-cancer analytic module was implemented in JavaScript. All
the table results were displayed by DataTables, and all the nested
plots were generated by HighCharts.

RESULTS

A Protein-centric Pan-cancer Analytic Module—Here we
present TCPA v3.0, a user-friendly, interactive platform with a
newly integrated protein-centric analytic module for research-
ers to visualize and analyze RPPA data from a pan-cancer
multi-omic perspective (Fig. 1, i). This new release includes
RPPA pan-cancer data with 258 protein markers quantified
from 7,694 TCGA patient samples across 32 cancer types
(7,436 primary tumors and 258 metastatic samples) (Fig. 1, ii).
The protein markers (include both total and phosphorylated
proteins) cover all major signaling pathways relevant to hu-
man cancer, such as PI3K/Akt, Ras/MAPK, and Hippo signal-
ing pathways. To maximize the utility of the RPPA data, we
collected other types of molecular and clinical data from
TCGA Pan-Cancer Atlas (Fig. 1, iii) to allow multidimensional
analyses.

The pan-cancer analytic module (Fig. 1, iv) is protein-cen-
tric, which enables users to examine the associations be-
tween protein expression and all other types of clinical and
molecular features (i.e. clinical, DNA, RNA, and protein data)
(Fig. 1, v-viii). The pan-cancer analytic module consists of four
submodules: (i) the “Clinical relevance” submodule shows
how protein expression correlates with patient clinical data,
including patient survival, tumor subtype, stage, and grade. (ii)
“Protein-DNA correlation” evaluates the associations be-
tween protein expression and gene mutational status, SCNAs,
and DNA methylation. (jii) In the “Protein-RNA correlation”
submodule, the correlations between protein expression and
mMmRNA/mMIRNA expression are examined; and (iv) the “Protein-
protein correlation” submodule assesses protein correlations.
All the analytic results can be visualized by interactive tables
under separated tabs. Users can easily sort and search any
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free survival interval; BRCA, breast invasive carcinoma; UCEC, uterine corpus endometrial carcinoma; Meth., DNA methylation.

column or search any keyword globally in a search box.
Because the results of all the cancer types are integrated into
a single table, it is very simple for users to test their pan-
cancer hypotheses directly. In addition, each row in the result
table has a nested plot showing the original data points, which
can be easily exported in either PNG or PDF format. For
example, Kaplan-Meier plots, box plots, and scatter plots are
generated to help visualize survival analysis, protein-muta-
tion, and protein-mRNA correlations, respectively.

Specifically, with the “Clinical relevance” submodule, users
can examine whether a protein marker correlates with patient
overall or progression-free survival time (as tested by univari-
ate Cox proportional-hazards model and log-rank test; visu-
alized through a Kaplan-Meier plot), or whether a protein
shows differential expression among tumor stages, grades, or
subtypes (as tested by ANOVA,; visualized through box plots).
This submodule can help discover potential prognostic mark-
ers across different cancer types. For example, patients with
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Fic. 2. Protein expression affected by significantly mutated genes. (A) Protein expression change of the 299 SMGs across cancer types.
Student’s t test followed by multiple testing correction (FDR) was used to identify differentially expressed proteins among the mutated and
wild-type groups defined by the mutational status of a gene. Only the differentially expressed proteins with FDR < 0.1 are shown. The circle
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indicate the SMGs, and the green squares indicate the cancer pathways. The links between nodes are colored in red/blue to represent the
up-/down-regulation of the pathway in the mutated group of an SMG. The line thickness represents how many cancer types show a significant
correlation, and only those relationships observed in at least two cancer types are shown.

high PTEN protein expression show better overall survival
than those with low expression in kidney renal clear cell
carcinoma, low-grade glioma, and mesothelioma, while it
shows better progression-free survival in kidney renal clear
cell carcinoma alone (Fig. 1, v). The “Protein-DNA correlation”
submodule enables users to examine whether the expression
of a protein marker is affected by somatic mutations in a
specific gene (as tested by Student’s t test among the mu-
tated and wild-type sample groups; visualized through box
plots) or whether its expression correlates with DNA methyl-
ation and SCNAs (as tested by Spearman’s rank correlation;
visualized through scatter plots). For example, mutated PTEN
leads to significantly lower protein expression in breast inva-
sive carcinoma, low-grade glioma, and uterine corpus endo-
metrial carcinoma (Fig. 1, vi). The “Protein-RNA correlation”
submodule allows users to examine whether a protein marker
shows correlations with RNA abundance of its own or other
genes, including coding or miRNA genes (both as tested by
Spearman’s rank correlation; visualized through scatter plots).
For example, CYCLINB1 (protein marker) and KIF2C have a
positive correlation in breast invasive carcinoma and other
cancer types, except for cholangiocarcinoma, thyroid carci-
noma, and uveal melanoma (Fig. 1, vii). Finally, the “Protein
correlation” submodule (Fig. 1, viii) provides an effective way

for users to examine whether the expression levels of any two
protein markers correlate with each other across cancer types
(as tested by Spearman’s rank correlation; visualized through
scatter plots). For each submodule, these pairwise associa-
tions are presented in a table view. The first column is the
cancer types observed for the associations, followed by the
protein markers and their relevant clinical or molecular fea-
tures, and then the corresponding statistic and p value. All
these precomputed significant results can be directly down-
loaded through the portal. To demonstrate the utility of this
newly developed pan-cancer analytic module, we further ex-
amined the significant findings of the pan-cancer results in
TCPA v3.0.

Correlations of Protein Expression with Significantly Mu-
tated Genes—To assess the associations between protein
expression and somatic mutations, we focused on 299 SMGs
identified in a recent study (14) because SMGs are usually
cancer driver genes and the sample sizes of their mutated
groups are sufficiently large for statistical tests. First, we
examined whether SMGs were associated with the levels of
their corresponding proteins. As shown in Fig. 2A, p53 was
the most differentially expressed protein between TP53 wild-
type and mutated patient samples across cancer types,
showing a significant difference in 11 cancer types. Intrigu-
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ingly, in all the 11 cancer types, p53 protein expression was
up-regulated in the mutated group, suggesting a potential
feedback-loop regulation involved in p53-related pathways.
ARID1A, PTEN, and ATM showed decreased expression in
the mutated group, which might be partly due to nonsense-
mediated RNA degradation (16). Next, we investigated how
cancer-related pathways were associated with the mutational
status of SMGs. As in Fig. 2B, TP53 again showed the strong-
est correlations among all the SMGs. Most of the pathways
surveyed were highly correlated with TP53 mutation status in
many cancer types, suggesting that TP53 serves as a master
regulator in signaling cascades of cancer cells. Specifically,
DNA damage response, TSC/mTOR, apoptosis, and cell cycle
were highly up-regulated in multiple cancer types in TP53
mutated samples. Among all the pathways, RTK was regu-
lated by the largest number of SMGs (in total seven SMGs,
such as BRAF, EPAS1, and KIT) across many cancer types.
Interestingly, all seven SMGs were associated with down-
regulation of RTK pathway. These results provide an overall
view of potential effects of somatic mutations on their protein
and pathway activities.

Predictive Power of mRNA, SCNA, and DNA Methylation on
Protein Expression— Protein expression is affected by a vari-
ety of genomic and transcriptomic features, where SCNAs,
DNA methylation, and mRNA expression are expected to
associate with protein abundance change directly. Thus, we
conducted a comparative analysis to see which feature con-
tributes most to protein expression. As shown in Fig. 3A, all
the three features showed correlations in cis pairs significantly
different from trans pairs (all three t test p values < 2.2e-16).
Specifically, mRNA expression showed much stronger posi-
tive correlations with protein abundance (the averaged p =
0.30; same to the average p computed from our previous
TCGA pan-cancer by Akbani et al. (10)); SCNAs also showed
positive effects but to a lesser extent than mRNA (the aver-
aged p = 0.11); and DNA methylation showed more negative
correlations (the averaged p = —0.09), consistent with their
gene-silencing role. We observed similar patterns within par-
ticular cancer types, although the correlation strength varied
from protein to protein (Fig. 3B). We next wanted to identify
the best predictor for the protein abundance given a specific
protein. Thus, for the samples with all the four data types
available, we collected all the significant correlations (FDR <
0.1 and p = 0.3) and selected a feature from SCNA, methyl-
ation, or mRNA as the best predictor if its correlation domi-
nated the other two. As shown in Fig. 3C, the expression of
most proteins can be best predicted by mRNA in almost all
cancer types, except for cholangiocarcinoma and uveal
melanoma. Only for a small number of proteins, the protein
abundance was better inferred by DNA methylation (such as
testicular germ cell tumors or SCNAs (such as sarcoma),
which may be due to potential noise of gene expression
quantification, especially for those genes with close paral-
ogs or complicated splicing isoforms. These results help

assess the relative importance of different cis-elements on
protein expression.

Regulatory Effects of miRNAs on Protein Expression—To
better understand the miRNA regulation on protein expres-
sion, we performed an integrative analysis to investigate their
correlations in different cancer contexts. As shown in Fig. 4A,
by comparing the correlations of predicted target genes ver-
sus nontarget genes, we identified 19 miRNAs as potential
key regulators across cancer types by using the KS-test-
based approach (see Methods). The top two frequently ob-
served miRNAs is hsa-miR-18a-5p (in seven cancer types),
which has been reported to function as an oncogene in renal
cell carcinoma (17) and lung cancer (18) and hsa-miR-532-5p
(in five cancer types), a tumor suppressor in liver cancer (19).
These results supported their regulatory roles in kidney renal
clear cell carcinoma, lung squamous cell carcinoma, and
hepatocellular carcinoma (Fig. 4A). To pinpoint the high-con-
fidence miRNA target proteins, we inferred the regulatory
networks across cancer types (Figs. 4B and 4C) using those
pairs with a significantly negative Spearman’s rank correlation
(FDR < 0.1). The miRNA, hsa-miR-18a-5p, appeared to have
a strong effect on ATM, c-KIT, HER2, ER«, and Gab2, while
hsa-miR-532-5p showed significant effects on protein targets,
ETS-1, ACRL1, and N-Cadherin. Because miRNAs can regu-
late gene expression either through mRNA decay or transla-
tional repression (20), we next examined which regulatory
mechanisms these miRNAs may involve by performing paral-
lel miRNA-mRNA correlation analysis. Interestingly, in some
cases, only proteins but not mRNAs showed significantly
negative correlations, suggesting a dominating effect of trans-
lational inhibition. One such example is the case of hsa-miR-
532-5p (Fig. 4D). The results suggest that the RPPA data
provide additional information gain to help identify miRNA
direct targets and elucidate the corresponding regulatory
mechanisms.

Co-expression Network Analysis of Proteins and Path-
ways—To better characterize the functional associations
among proteins, we first calculated pathway scores and built
a nested co-expression network based on the correlations
between pathways and proteins (Fig. 5). The network consists
of two parts: (i) the inner network shows how different path-
ways are correlated among cancer types, in which each node
represents a pathway and each edge represents the recur-
rence of significant correlations in different cancer types; (i)
the outer network shows the zoom-in relationships between
protein members in each pathway, in which each node is a
protein marker with the linked pathway and each edge repre-
sents the recurrence of significant correlations. Among the
pathways, we found two complete graphs (cliques): one con-
sisted of PI3K/Akt, TSC/mTOR, RTK, and Ras/MAPK path-
ways, showing all positive correlations with each other in at
least 20 cancer types, and the other consisted of apoptosis,
epithelial-mesenchymal transition, and core reactive with all
positive correlations in at least 15 cancer types. The clique
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(p values) between protein abundance and the three features (MRNA, SCNA, and DNA methylation) across cancer types. The red bars and
curve represent the cis-pairs of protein—feature that are associated with the same gene. The green bars and curve represent the background
of p values constructed from the trans-pairs in the same dataset. (B) Box plots of the p values for the three features across cancer types. The
dotted lines indicate a correlation magnitude of 0.3 (sign independent). (C) Bar plots for the percentages of proteins with predicted abundances
that can be explained by at least one of the three features (FDR < 0.1 and p = 0.3). Different colors represent the percentages of proteins that
can be best predicted by SCNA (orange), methylation (red), or mRNA (blue). Gray represents the percentage of proteins that cannot be
predicted by any of the three features.
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shows the numbers of cancer types that have repression observed. (B) and (C) Regulatory networks of the top-1 and top-2 miRNAs from (A).
The negative correlations with significance are shown (Spearman’s rank correlation, FDR < 0.1). (D) Box plots of Spearman’s rank correlation
coefficients of target proteins versus nontarget proteins at the mRNA and protein levels for has-miR-532-3p. KS test was used to assess the

differences. *, p < 0.05; **, p < 0.01.

patterns highlight the coordination of these pathways. Inter-
estingly, these two cliques were linked by another clique
consisting of apoptosis, TSC/mTOR, and RTK where apopto-
sis was negatively correlated with the other two pathways.
These results present a summary of interactions among path-
way members and potential crosstalk between pathways in
cancer.

Clinically Relevant Patterns of RPPA Protein Markers—Fi-
nally, we examined the clinical relevance of RPPA protein
markers by assessing their correlations with patient survival
time, tumor subtype, and disease stage across different can-
cer types. As shown in Fig. 6A, we found that 21 protein
markers correlated with overall patient survival times in at
least five cancer types (FDR < 0.1, log-rank test or Cox
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Fic. 5. A nested co-expression network for proteins and cancer pathways. This nested co-expression network consists of an inner
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nodes are colored in red/green to indicate positive/negative correlations. The thickness of the links represents how many cancer types
showing statistical significance (Spearman’s rank correlation, FDR < 0.1). For simplicity, only the links supported by at least 10 cancer
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proportional-hazards model). Among the 21 protein markers,
the best prognostic marker fibronectin (FN7) showed a con-
sistent and significant prognostic pattern in nine cancer types
(Fig. 6B): high fibronectin expression correlated with worse
patient survival (Fig. 6C). Consistent with the previously re-
ported patterns in breast, colorectal, and head and neck
cancer types (21-23), these results suggest that fibronectin
could serve as a robust prognostic marker across cancer
types. As for correlations with established tumor subtypes, we

found that many of the 258 protein markers were differen-
tially expressed among the established tumor subtypes (e.g.
PAMS50 for breast invasive carcinoma), suggesting the
power of RPPA protein markers in defining tumor heteroge-
neity within a particular cancer type (Fig. 6D). Also, we
observed some proteins showing the expression patterns cor-
related with tumor stages in a monotonic manner (continuously
increased/decreased expression along with tumor stage), sug-
gesting their involvement in tumor progression (Fig. 6E). To-
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Fic. 6. Clinical relevance of protein markers. (A) Bar plot for the number of proteins that are associated with overall patient survival times.
(B) The protein associated with overall patient survival times observed in at least five cancer types. The circles represent an association
showing significance in log-rank test or Cox proportional-hazards model (FDR < 0.1). The circle colors indicate that high protein expression
is associated with better (red) or worse (blue) overall survival times than that with low expression based on the hazard ratios of Cox
proportional-hazards model. (C) Kaplan Meier curves of fibronectin (FN7) in the nine cancer types. (D) Bar plot for the numbers of differentially
expressed proteins among known tumor subtypes. (E) Bar plot for the numbers of differentially expressed proteins along with tumor stage and
the red bars show the numbers of proteins with a monotonic change.

gether, these results demonstrate the translational potential of
protein markers in improving prognosis and defining tumor
heterogeneity.

DISCUSSION

Pan-cancer analyses using multi-omic TCGA data have
demonstrated tremendous potentials to identify biologically
and clinically meaningful patterns. Here we present TCPA
v3.0 as a user-friendly, interactive platform to explore and
analyze TCGA pan-cancer RPPA-based protein expression

data. The new pan-cancer analytic module provides a unique
opportunity for biomedical researchers to test their protein-
driven multi-omic hypotheses across a broad range of cancer
types. Based on the analytic results obtained from this new
module, we have identified many molecular and clinical fea-
tures that show significant associations with protein markers
in diverse cancer contexts. These findings further demon-
strate the utility of the pan-cancer analytic module by helping
users confirm known mechanisms, reveal novel biological
insights, and test/refine specific hypotheses. We recognize
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one major limitation that the current pan-cancer RPPA data
only cover ~260 protein markers, which limits the scope
of using functional proteomics to elucidate cancer-related
mechanism. For example, when searching for cis-regulators,
only a small number of known miRNA targets were identified.
We are now in the process of expanding the list to 500
proteins covering all major cancer pathways. We expect this
new version of TCPA to be a valuable bioinformatic resource
for the cancer research community.
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